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Abstract— The ability to extrapolate gene expression dy-
namics in living single cells requires robust cell segmentation,
and one of the challenges is the amorphous or irregularly
shaped cell boundaries. To address this issue, we modified the
U-Net architecture to segment cells in fluorescence widefield
microscopy images and quantitatively evaluated its perfor-
mance. We also proposed a novel loss function approach that
emphasizes the segmentation accuracy on cell boundaries and
encourages shape feature preservation. With a 97% sensitivity,
93% specificity, 91% Jaccard similarity, and 95% Dice coeffi-
cient, our proposed method called Residual Attention U-Net
with edge-enhancement surpassed the state-of-the-art U-Net
in segmentation performance as evaluated by the traditional
metrics. More remarkably, the same proposed candidate also
performed the best in terms of the preservation of valuable
shape features, namely area, eccentricity, major axis length,
solidity and orientation. These improvements on shape feature
preservation can serve as useful assets for downstream cell
tracking and quantification of changes in cell statistics or
features over time.

I. INTRODUCTION
Observations of cell dynamics at the population level

is inherently sub-optimal due to the heterogeneity among
individual cells. In contrast, imaging approaches enable
single cell analysis, but require robust delineation of cell
boundaries (aka., cell segmentation) and, for temporal in-
formation, matching cell identities over time (aka., cell
tracking). Simpler cases with desirable properties such as
high foreground-background contrast, high signal-to-noise
ratios, and similar cell appearances, can be well handled by
automated algorithms. On the other hand, manual annotation
by experts is necessary whenever complications arise. Since
the manual task of labeling and tracking is both tedious
and may be inefficient and inconsistent when annotated by
different individuals, a robust and automated alternative is
highly desired.

The most promising work comes from the field of com-
puter vision, where the topics of instance segmentation (i.e.
treating multiple objects of the same category as separable
individuals, as opposed to semantic segmentation) and multi-
object tracking have been heavily visited. As summarized
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in Ciaparrone et al [1], segmentation and tracking tasks are
typically addressed with four sequential steps: object detec-
tion, feature extraction, similarity calculation and identity
association. While a lot of studies has been place on each
of these four steps, the necessity of preserving cell shape
features is underrepresented in the literature. Additionally,
traditional evaluation metrics to quantify segmentation per-
formance, such as accuracy, specificity, and Jaccard simi-
larity, do not directly reflect how well a cell boundary is
delineated. For example, if a star-shaped cell whose long
processes constitutes 3% of its total area is approximated
with a simple elliptical segmentation, the scores given by
the aforementioned metrics can go beyond 95%, even though
essential shape features are completely discarded.

Morphological details carry important information about
the cell. For instance, the various unusual shapes of red blood
cells reflect different developmental stages and/or patholo-
gies [2]. Efforts spent on preserving cell shape features not
only benefit the performance of various tracking algorithms
that primarily rely on shape features such as Dewan et al
[3], but also enable more accurate quantification of cell
characteristics since the segmentation result is more reliable.

II. RELATED WORK

Computational techniques adopted for cell segmentation
range from thresholding [4] on the simpler end along the
spectrum of methods to deep learning and graph theory [5]
toward the more sophisticated end. The method should be
selected on a case-specific basis, i.e., a straightforward and
effective algorithm for one case may completely fail for a
second, while a rigorous and robust algorithm for the second
may be overly complicated for another, etc. For instance,
Al-Hafiz et al [4] could achieve an 87.9% accuracy rate by
merely applying a dynamic thresholding algorithm on the
image gradient and refining with morphological operations
because their red blood cells are mostly homogeneous in
intensity, regularly shaped, and clearly distinguishable from
the background.

A few benchmarks for cell segmentation, or instance
segmentation in general, include the U-Net family [6] and
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the R-CNN family of neural networks. The former is known
for wide application in biomedical image segmentation while
the latter excels at proposing likely objects and evaluating
such detection proposals.

Datasets complicated by bias fields, visual artifacts, am-
biguous cell boundaries, irregular cell shapes, overlapping
or touching cells and other factors collectively render the
problem significantly more challenging. One of the best
performing algorithms in a similarly complicated dataset
is introduced by Falk’s team [6]Therefore we implemented
the same deep learning architectures as they did and made
performance-boosting adjustments on a variety of aspects
from architecture and loss function to image processing
techniques.

III. METHODS
The data we used was acquired at Columbia University

in the department of Biomedical Engineering, where images
were collected on the same baby hamster kidney (BHK) cell
cultures every 20 minutes over roughly 15 hours. These im-
ages were acquired using fluorescence widefield microscopy
images of nuclear and cytoplasmic live cell stains, differential
interference contrast (DIC), and fluorescent proteins from
cytoplasmically localized reporters. How the data is subse-
quently processed is described in the upcoming subsections
as well as illustrated in Figure 1.

Fig. 1. Demonstration of the segmentation and tracking pipeline.
a.&f. Bias field correction and intensity normalization. b.&g. Channel-
combination to form pseudo-RGB images. c. Manual annotation. d.&h.
Provide as input. e. Use the manual annotation as the ground truth to tune
the deep learning network. Only provided during training and validation but
not during testing. i. Post-processing. j. Future tracking algorithms.

A. Pre-processing and Data Augmentation

The nuclear and cytoplasmic stains, along with the DIC
images, are treated as three channels of information for
the localization of cells. Additional fluorescent reporters are
treated as cell parameters that can be extracted once the seg-
mentation and tracking is complete. The three channels are
bias-field corrected and intensity normalized. A histogram-
based intensity normalization is then performed on each of
the three images. A selected percentage of the brightest and
darkest intensities are clipped while the remaining values are
linearly mapped to the range of [0, 1]. Next, the 3 channels
are concatenated to form pseudo-RGB images (red: nuclei,
green: cytoplasm, blue: DIC). Manual annotation of the
cells are done on the pseudo-RGB images, and the pseudo-
RGB are fed into the deep learning network as the input

representations with the manual annotations as the ground
truths that guide the training process.

Data augmentation is done by random horizontal and
vertical flipping, as well as random patch selection on
the 4,792×3,200 regions yielding patches of dimension
1,600×1,600. Scaling and affine deformations are not con-
sidered here as they may alter naturally-occurring shape
features. Also, data augmentation is only implemented for the
training and validation sets. In total, we used approximately
4,600 cells in the training set, 1,000 in the validation set and
500 in the test set.

B. Deep Learning Architecture for Segmentation

The deep learning architecture is a five-layered Residual
Attention U-Net (ResAttU-Net), inspired by an open-source
GitHub repository [7]. The major differences between this
architecture and the popular U-Net is the addition of two
pieces in the former: Residual Blocks introduced in He at el
[8] and Attention Mechanism introduced in Oktay et al [9].

C. The Edge-Enhancement Approach

Due to the desire to retain the long cellular extensions
characteristic to our cell-line of interest, BHK-21, we imple-
mented is a novel loss function approach that called edge-
enhancement (EE). A loss function is defined as the binary
cross-entropy loss between the deep-learning-predicted seg-
mentation and the manually-annotated segmentation ground
truth after flattening them into vectors (Figure 2a). For
edge-enhancement, we emphasize the weighting on the ac-
curate prediction of the cell edges (Figure 2b). We find
the Laplacian-of-Gaussian of the ground truth segmentation,
take two binary-thresholded versions of the resulting image
that respectively corresponds to the inner and outer cell
boundaries, vectorize the foreground regions as well as their
corresponding regions in the deep learning prediction, and
append them to their respective segmentation vectors for loss
calculation.

D. Post-processing of the Segmented Cells

Once the deep learning cell segmentation is generated, it
is refined by watershed splitting of adjacent touching cells.
The cleaned up segmentation result can be directly provided
as input to any suitable downstream tracking algorithm.

E. Evaluation of Cell Segmentation: Traditional Metrics

The segmentation performance of the candidates being
compared are listed in Table I. Among all candidates,
ResAttU-Net with our edge-enhancement approach achieved
the best performance in all metrics evaluated. With 97%
sensitivity and 93% specificity, the method we propose
outperformed a segmentation benchmark, U-Net [10].

F. Evaluation of Cell Segmentation: Shape Feature Preser-
vation

We first grouped a total number of 85 randomly selected
cells from the test set into three shape categories based
on their convexity, as calculated by the area of the cell
divided by the area of its convex hull. Highly-convex cells
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Fig. 2. Illustration of the Edge-Enhancement Approach on an Example Patch of Dimension 8×8. a. Typical calculation of binary cross entropy
loss. b. Proposed calculation for binary cross entropy loss by emphasizing edge information.

(convexity > 0.95) are categorized as round, least-convex
cells (convexity < 0.5) as star-shaped, while the ones in
between as spindle-shaped. Afterwards, five shape features
were extracted from the respective segmentation mask of
each cell. From Figure 3 and Figure II, it can be seen that
our proposed method performed the best in terms of cell
shape feature preservation. As a result, the mean intensity
values of the three information-providing channels within
the segmentation mask given by our proposed method also
best resembled those in the manual annotation ground truth
masks. It is reasonable to believe that the same will hold true
for other information to be extracted from these segmentation
results.

TABLE I
EVALUATION OF THE SEGMENTATION USING TRADITIONAL

QUANTITATIVE METRICS.

IV. DISCUSSIONS

A. Irreplaceability of Shape Feature Metrics

Traditional evaluation metrics (Table I) imply barely dis-
tinguishable performance of the two U-Net candidates re-
gardless of edge-enhancement. However, the shape feature
metrics (Figure II) reveals their advantages and disadvantages
in a more comprehensive manner. We can thus conclude that
shape feature metrics provide insights that are not reflected
in the traditional metrics.

B. Effect of Edge-enhancement on U-Net

The effect of edge-enhancement on U-Net is better ex-
plained by the shape features. The version with edge-
enhancement performed slightly better for the spindle-shaped
cells but slightly worse for cells in the other two categories.

TABLE II
EVALUATION OF THE SEGMENTATION USING TRADITIONAL

QUANTITATIVE METRICS.

However, more spindle shapes were more prevalent in the
training data. It is possible that U-Net does gain a better
grasp of shape features under the help of edge-enhancement,
but the improvement is somewhat coarse and is tailored
better towards more frequently occurring cell shapes. The
deep learning model, despite having difficulty learning the
nuances of cells from all shape categories, is nevertheless
able to provide a better segmentation for cells from the most
prevalent shape category.

C. Effect of Edge-enhancement on ResAttU-Net

Unlike the more ambiguous case with U-Net, the edge-
enhancement approach boosts the segmentation performance
of ResAttU-Net on almost every aspect. We hypothesize
that a network with the attention mechanism would benefit
more from edge-enhancement. Indeed this was the case,
since the attention mechanism enabled the network to better
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Fig. 3. Visualization of the segmentation and demonstration of the cell features. The original pseudo-RGB images (R: nuclei, G: cytoplasm, B:
DIC) are overlayed with the respective segmentation masks in light green. The cytoplasm extensions are best captured by the ResAttU-Net with edge
enhancement (see Section 3.4). The percentage change of each shape feature with respect to the manual ground truth also indicates a better shape feature
preservation in that candidate. Note that for orientation, 100 percent difference represents a mismatch of 90 degrees.

understand / encode the regional contribution to the loss, and
therefore the network was able to know which parameters to
adjust in response to the training feedback. In this way, it
was better able to adjust itself to preserve the shape features
for all cell shapes.

D. Potential Utility of our Proposed Candidate

The ability to track cells over time provides insight into
processes ranging from bacterial dynamics to mammalian de-
velopment [11]. A central challenge, however, is robust cell
segmentation. This is especially challenging for identifying
the entirety of the cytoplasm of complex and motile cells
who may have irregular shapes and/or long and thin cellular
processes. This contrasts with simple alternative methods
that rely exclusively on identifying the nucleus of a cell, but
which necessarily exclude the study of cytoplasmic processes
or fluorescent reporters not amenable to nuclear reporters.
The method described here helps overcome the limitations
of alternative segmentation approaches and preserves the
unusual processes and extensions observed in certain primary
cells or cell lines, and will likely find relevance beyond the
BHK-21 line studied here.
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